Predicted Incrementality by Experimentation (PIE)

Florian Zettelmeyer

Kellogg School of Management, Northwestern University

Joint work with Brett Gordon (Northwestern) and Robert Moakler (Meta)

MSI 2024 Summit

Copyright © 2024 Florian Zettelmeyer

Randomized controlled trials (RCTs) are recognized as the "gold standard" to measure incremental (causal) effects

Randomized controlled trials (RCTs) are recognized as the "gold standard" to measure incremental (causal) effects

Randomized controlled trials (RCTs) are recognized as the "gold standard" to measure incremental (causal) effects

Randomized controlled trials (RCTs) are recognized as the "gold standard" to measure incremental effects

Control

But what if you can't run an RCT?

Imagine we don't have an RCT...

Target Audience

Proxy metrics are a common approach

Problem: Can over or underestimate incrementality

Alternatively, we could compare outcomes between people who saw versus did not see the ad campaign

Problem: Suffers from "selection bias" into ad exposure

"Undoing" the selection induced by ad-targeting algorithms using causal inference approaches has been unsuccessful

EVIDENCE

- Gordon, Zettelmeyer, Chapsky, Bhargava (2019), Marketing Science
 - Compare RCTs with (observational) program evaluation approaches
 - 15 studies, hand-selected -> cannot come close replicating RCT results
- Gordon, Moakler, Zettelmeyer (2023), Marketing Science
 - 1673 RCTs, representative
 - SPSM, Double/Debiased ML + Deep Learning for propensity score
 - From 30 to (nearly all ~ 5000) logged features at FB
 - Equally depressing ...

RCT Lift vs. Lift from SPSM & DML

Funnel Level of Outcome	Median Lift		
	RCT	SPSM	DML
Upper	29%		
Mid	18%		
Lower	5%		

The RCT lift estimates and ...

- **SPSM** are statistically different in 1482 / 1673 = 89% of the RCTs
- **DML** are statistically different in 1258 / 1673 = 75% of the RCTs

So, what should advertisers do?

Don't have the data for observational methods

And can't run RCTs all the time

We have tried to estimate the causal effect of advertising without RCTs by controlling for user-level selection bias

"Traditional" Causal Inference methods

We often have RCTs for a subset of advertising campaigns...

Ad campaigns as RCTs

Ad campaigns not as RCTs

Target Audience	Control (unexposed)
Exposed	
Unexposed	

RCT Lift

Predictive Incrementality by Experimentation (PIE)

Copyright © 2024 Florian Zettelmeyer

Using a database of RCTs, how well could we predict a new campaign's RCT Lift if it was <u>not</u> run as an RCT?

- Unit of observation is an RCT campaign, not a user
- Shift to predictive models, instead of those from causal inference
- Use our RCT dataset to assess the performance of PIE models

PIE – a first cut

Incremental Conversion in $\operatorname{RCT}_r = \theta(\# \text{ of } \operatorname{LC}^w \operatorname{Conversions} \text{ in } \operatorname{RCT}_r) + \operatorname{Error}_r$ Calibration Factor"

We estimate this model separately by:

- Funnel levels (Lower, Mid, Upper)
- Last click attribution windows w ∈ {1 hour, 1 day, 7 days, 28 days}

Calibration factor model by funnel and attribution window

To generalize this approach, we normalize incremental conversions by ad spend and add more features

RCT Incremental Conversions per Dollar (ICPD)

$$\operatorname{ICPD}_r = f\left(X_r^{\operatorname{pre}}, X_r^{\operatorname{post}}; \theta\right) + \varepsilon_r$$

Advertiser-campaign characteristics known before campaign was run

Campaign: targeting criteria, bidding params, optimization goal, budget, etc. *Advertiser:* vertical, experimentation experience, etc. Proxy metrics known after campaign was run

Last click conversion counts by {1H, 1D, 7D, 28D}

If available, other post-campaign metrics could be used (e.g., view-through conversion counts)

Key: None of the features rely on the RCT control group

We try a variety of models and two feature sets

$$f\left(X_r^{\text{pre}}, X_r^{\text{post}}; \theta\right)$$

- Models for
 - raw: how well does each last click metric perform by itself?
 - cf: calibration factor model (the "first cut")
 - Im: linear regression
 - rf: random forest
- Features used in **Im** and **rf**
 - •m1: $X_r^{\text{post}} = \{\text{LC-1h}, \text{LC-1d}, \text{LC-7d}, \text{LC-28d}\}$ $X_r^{\text{pre}} = \{\}$ •m2: $X_r^{\text{post}} = \{\text{LC-1h}, \text{LC-1d}, \text{LC-7d}, \text{LC-28d}\}$ $X_r^{\text{pre}} = \{\text{everything}\}$

Assess the models using Percent WRMSE based on Leave-One-Out Predictions

A random forest (rf) with all features performs best

The percent WRMSE for the best specification is around 50%

PIE does much better than SPSM or DML

PIE also does substantially better than the industrystandard 7-day Last-Click Attributed Conversions

PROBLEM - Advertisers <u>can't rely</u> on observational data, nor can they <u>always</u> run RCTsbut they still need to measure advertising effects

Recap: What exactly is PIE?

- **PROBLEM** Advertisers <u>can't rely</u> on observational data, nor can they <u>always</u> run RCTsbut they still need to measure advertising effects
- **KEY IDEA** Advertisers can still run RCTs for a <u>subset</u> of campaigns ...
 - Use RCTs to predict ad effects for new campaign's that were not run as an RCT

Recap: What exactly is PIE?

- **PROBLEM** Advertisers <u>can't rely</u> on observational data, nor can they <u>always</u> run RCTsbut they still need to measure advertising effects
- **KEY IDEA** Advertisers can still run RCTs for a <u>subset</u> of campaigns ...
 - Use RCTs to predict ad effects for new campaign's that were not run as an RCT
- **STANDARD** Estimate ad effects using campaign and user characteristics <u>before campaign ran</u> **PREDICTION** - Uses "<u>pre-determined</u>" features: e.g. FinTech ads have higher lift than CPG ads

Recap: What exactly is PIE?

- **PROBLEM** Advertisers <u>can't rely</u> on observational data, nor can they <u>always</u> run RCTsbut they still need to measure advertising effects
- **KEY IDEA** Advertisers can still run RCTs for a <u>subset</u> of campaigns ...
 - Use RCTs to predict ad effects for new campaign's that were not run as an RCT
- **STANDARD** Estimate ad effects using campaign and user characteristics <u>before campaign ran</u> **PREDICTION** - Uses "<u>pre-determined</u>" features: e.g. FinTech ads have higher lift than CPG ads
 - **PIE** Predict ad effects using performance features <u>after the campaign starts</u>
 - Uses "post-determined" features: e.g. clicks, last-click conversion, page views, ...
 - Anything in the treatment group that is correlated with causal ad effects
 - Move from causal inference to a prediction problem

PIE will work when post-determined features are predictive and the relationship is <u>stable</u>

WHEN PIE IS LIKELY TO WORK

- PREDICTIVE: RCTs need to measure causal effect (not too noisy)
 Post-determine features need to contain some causal signal
 (empirical question)
- **STABLE:** We need the nature of this relationship to be stable over time (i.e., no concept shift)

So, is PIE useful for practice?

HOW SHOULD WE MEASURE CAUSAL ADVERTISING EFFECTS?

- Attribution models are biased
- Causal inference models don't work
- RCTs are only viable option ... but are infeasible at scale
- PIE makes RCTs scalable
- In our testing PIE has smaller confidence intervals than raw RCTs

Thank you!

Northwestern | Kellogg